...
Run Format

Text file src/runtime/asm_amd64.s

Documentation: runtime

     1// Copyright 2009 The Go Authors. All rights reserved.
     2// Use of this source code is governed by a BSD-style
     3// license that can be found in the LICENSE file.
     4
     5#include "go_asm.h"
     6#include "go_tls.h"
     7#include "funcdata.h"
     8#include "textflag.h"
     9#include "cgo/abi_amd64.h"
    10
    11// _rt0_amd64 is common startup code for most amd64 systems when using
    12// internal linking. This is the entry point for the program from the
    13// kernel for an ordinary -buildmode=exe program. The stack holds the
    14// number of arguments and the C-style argv.
    15TEXT _rt0_amd64(SB),NOSPLIT,$-8
    16	MOVQ	0(SP), DI	// argc
    17	LEAQ	8(SP), SI	// argv
    18	JMP	runtime·rt0_go(SB)
    19
    20// main is common startup code for most amd64 systems when using
    21// external linking. The C startup code will call the symbol "main"
    22// passing argc and argv in the usual C ABI registers DI and SI.
    23TEXT main(SB),NOSPLIT,$-8
    24	JMP	runtime·rt0_go(SB)
    25
    26// _rt0_amd64_lib is common startup code for most amd64 systems when
    27// using -buildmode=c-archive or -buildmode=c-shared. The linker will
    28// arrange to invoke this function as a global constructor (for
    29// c-archive) or when the shared library is loaded (for c-shared).
    30// We expect argc and argv to be passed in the usual C ABI registers
    31// DI and SI.
    32TEXT _rt0_amd64_lib(SB),NOSPLIT|NOFRAME,$0
    33	// Transition from C ABI to Go ABI.
    34	PUSH_REGS_HOST_TO_ABI0()
    35
    36	MOVQ	DI, _rt0_amd64_lib_argc<>(SB)
    37	MOVQ	SI, _rt0_amd64_lib_argv<>(SB)
    38
    39	// Synchronous initialization.
    40	CALL	runtime·libpreinit(SB)
    41
    42	// Create a new thread to finish Go runtime initialization.
    43	MOVQ	_cgo_sys_thread_create(SB), AX
    44	TESTQ	AX, AX
    45	JZ	nocgo
    46
    47	// We're calling back to C.
    48	// Align stack per ELF ABI requirements.
    49	MOVQ	SP, BX  // Callee-save in C ABI
    50	ANDQ	$~15, SP
    51	MOVQ	$_rt0_amd64_lib_go(SB), DI
    52	MOVQ	$0, SI
    53	CALL	AX
    54	MOVQ	BX, SP
    55	JMP	restore
    56
    57nocgo:
    58	ADJSP	$16
    59	MOVQ	$0x800000, 0(SP)		// stacksize
    60	MOVQ	$_rt0_amd64_lib_go(SB), AX
    61	MOVQ	AX, 8(SP)			// fn
    62	CALL	runtime·newosproc0(SB)
    63	ADJSP	$-16
    64
    65restore:
    66	POP_REGS_HOST_TO_ABI0()
    67	RET
    68
    69// _rt0_amd64_lib_go initializes the Go runtime.
    70// This is started in a separate thread by _rt0_amd64_lib.
    71TEXT _rt0_amd64_lib_go(SB),NOSPLIT,$0
    72	MOVQ	_rt0_amd64_lib_argc<>(SB), DI
    73	MOVQ	_rt0_amd64_lib_argv<>(SB), SI
    74	JMP	runtime·rt0_go(SB)
    75
    76DATA _rt0_amd64_lib_argc<>(SB)/8, $0
    77GLOBL _rt0_amd64_lib_argc<>(SB),NOPTR, $8
    78DATA _rt0_amd64_lib_argv<>(SB)/8, $0
    79GLOBL _rt0_amd64_lib_argv<>(SB),NOPTR, $8
    80
    81#ifdef GOAMD64_v2
    82DATA bad_cpu_msg<>+0x00(SB)/84, $"This program can only be run on AMD64 processors with v2 microarchitecture support.\n"
    83#endif
    84
    85#ifdef GOAMD64_v3
    86DATA bad_cpu_msg<>+0x00(SB)/84, $"This program can only be run on AMD64 processors with v3 microarchitecture support.\n"
    87#endif
    88
    89#ifdef GOAMD64_v4
    90DATA bad_cpu_msg<>+0x00(SB)/84, $"This program can only be run on AMD64 processors with v4 microarchitecture support.\n"
    91#endif
    92
    93GLOBL bad_cpu_msg<>(SB), RODATA, $84
    94
    95// Define a list of AMD64 microarchitecture level features
    96// https://en.wikipedia.org/wiki/X86-64#Microarchitecture_levels
    97
    98                     // SSE3     SSSE3    CMPXCHNG16 SSE4.1    SSE4.2    POPCNT
    99#define V2_FEATURES_CX (1 << 0 | 1 << 9 | 1 << 13  | 1 << 19 | 1 << 20 | 1 << 23)
   100                         // LAHF/SAHF
   101#define V2_EXT_FEATURES_CX (1 << 0)
   102                                      // FMA       MOVBE     OSXSAVE   AVX       F16C
   103#define V3_FEATURES_CX (V2_FEATURES_CX | 1 << 12 | 1 << 22 | 1 << 27 | 1 << 28 | 1 << 29)
   104                                              // ABM (FOR LZNCT)
   105#define V3_EXT_FEATURES_CX (V2_EXT_FEATURES_CX | 1 << 5)
   106                         // BMI1     AVX2     BMI2
   107#define V3_EXT_FEATURES_BX (1 << 3 | 1 << 5 | 1 << 8)
   108                       // XMM      YMM
   109#define V3_OS_SUPPORT_AX (1 << 1 | 1 << 2)
   110
   111#define V4_FEATURES_CX V3_FEATURES_CX
   112
   113#define V4_EXT_FEATURES_CX V3_EXT_FEATURES_CX
   114                                              // AVX512F   AVX512DQ  AVX512CD  AVX512BW  AVX512VL
   115#define V4_EXT_FEATURES_BX (V3_EXT_FEATURES_BX | 1 << 16 | 1 << 17 | 1 << 28 | 1 << 30 | 1 << 31)
   116                                          // OPMASK   ZMM
   117#define V4_OS_SUPPORT_AX (V3_OS_SUPPORT_AX | 1 << 5 | (1 << 6 | 1 << 7))
   118
   119#ifdef GOAMD64_v2
   120#define NEED_MAX_CPUID 0x80000001
   121#define NEED_FEATURES_CX V2_FEATURES_CX
   122#define NEED_EXT_FEATURES_CX V2_EXT_FEATURES_CX
   123#endif
   124
   125#ifdef GOAMD64_v3
   126#define NEED_MAX_CPUID 0x80000001
   127#define NEED_FEATURES_CX V3_FEATURES_CX
   128#define NEED_EXT_FEATURES_CX V3_EXT_FEATURES_CX
   129#define NEED_EXT_FEATURES_BX V3_EXT_FEATURES_BX
   130#define NEED_OS_SUPPORT_AX V3_OS_SUPPORT_AX
   131#endif
   132
   133#ifdef GOAMD64_v4
   134#define NEED_MAX_CPUID 0x80000001
   135#define NEED_FEATURES_CX V4_FEATURES_CX
   136#define NEED_EXT_FEATURES_CX V4_EXT_FEATURES_CX
   137#define NEED_EXT_FEATURES_BX V4_EXT_FEATURES_BX
   138
   139// Darwin requires a different approach to check AVX512 support, see CL 285572.
   140#ifdef GOOS_darwin
   141#define NEED_OS_SUPPORT_AX V3_OS_SUPPORT_AX
   142// These values are from:
   143// https://github.com/apple/darwin-xnu/blob/xnu-4570.1.46/osfmk/i386/cpu_capabilities.h
   144#define commpage64_base_address         0x00007fffffe00000
   145#define commpage64_cpu_capabilities64   (commpage64_base_address+0x010)
   146#define commpage64_version              (commpage64_base_address+0x01E)
   147#define AVX512F                         0x0000004000000000
   148#define AVX512CD                        0x0000008000000000
   149#define AVX512DQ                        0x0000010000000000
   150#define AVX512BW                        0x0000020000000000
   151#define AVX512VL                        0x0000100000000000
   152#define NEED_DARWIN_SUPPORT             (AVX512F | AVX512DQ | AVX512CD | AVX512BW | AVX512VL)
   153#else
   154#define NEED_OS_SUPPORT_AX V4_OS_SUPPORT_AX
   155#endif
   156
   157#endif
   158
   159TEXT runtime·rt0_go(SB),NOSPLIT|NOFRAME|TOPFRAME,$0
   160	// copy arguments forward on an even stack
   161	MOVQ	DI, AX		// argc
   162	MOVQ	SI, BX		// argv
   163	SUBQ	$(5*8), SP		// 3args 2auto
   164	ANDQ	$~15, SP
   165	MOVQ	AX, 24(SP)
   166	MOVQ	BX, 32(SP)
   167
   168	// create istack out of the given (operating system) stack.
   169	// _cgo_init may update stackguard.
   170	MOVQ	$runtime·g0(SB), DI
   171	LEAQ	(-64*1024)(SP), BX
   172	MOVQ	BX, g_stackguard0(DI)
   173	MOVQ	BX, g_stackguard1(DI)
   174	MOVQ	BX, (g_stack+stack_lo)(DI)
   175	MOVQ	SP, (g_stack+stack_hi)(DI)
   176
   177	// find out information about the processor we're on
   178	MOVL	$0, AX
   179	CPUID
   180	CMPL	AX, $0
   181	JE	nocpuinfo
   182
   183	CMPL	BX, $0x756E6547  // "Genu"
   184	JNE	notintel
   185	CMPL	DX, $0x49656E69  // "ineI"
   186	JNE	notintel
   187	CMPL	CX, $0x6C65746E  // "ntel"
   188	JNE	notintel
   189	MOVB	$1, runtime·isIntel(SB)
   190
   191notintel:
   192	// Load EAX=1 cpuid flags
   193	MOVL	$1, AX
   194	CPUID
   195	MOVL	AX, runtime·processorVersionInfo(SB)
   196
   197nocpuinfo:
   198	// if there is an _cgo_init, call it.
   199	MOVQ	_cgo_init(SB), AX
   200	TESTQ	AX, AX
   201	JZ	needtls
   202	// arg 1: g0, already in DI
   203	MOVQ	$setg_gcc<>(SB), SI // arg 2: setg_gcc
   204	MOVQ	$0, DX	// arg 3, 4: not used when using platform's TLS
   205	MOVQ	$0, CX
   206#ifdef GOOS_android
   207	MOVQ	$runtime·tls_g(SB), DX 	// arg 3: &tls_g
   208	// arg 4: TLS base, stored in slot 0 (Android's TLS_SLOT_SELF).
   209	// Compensate for tls_g (+16).
   210	MOVQ	-16(TLS), CX
   211#endif
   212#ifdef GOOS_windows
   213	MOVQ	$runtime·tls_g(SB), DX 	// arg 3: &tls_g
   214	// Adjust for the Win64 calling convention.
   215	MOVQ	CX, R9 // arg 4
   216	MOVQ	DX, R8 // arg 3
   217	MOVQ	SI, DX // arg 2
   218	MOVQ	DI, CX // arg 1
   219#endif
   220	CALL	AX
   221
   222	// update stackguard after _cgo_init
   223	MOVQ	$runtime·g0(SB), CX
   224	MOVQ	(g_stack+stack_lo)(CX), AX
   225	ADDQ	$const_stackGuard, AX
   226	MOVQ	AX, g_stackguard0(CX)
   227	MOVQ	AX, g_stackguard1(CX)
   228
   229#ifndef GOOS_windows
   230	JMP ok
   231#endif
   232needtls:
   233#ifdef GOOS_plan9
   234	// skip TLS setup on Plan 9
   235	JMP ok
   236#endif
   237#ifdef GOOS_solaris
   238	// skip TLS setup on Solaris
   239	JMP ok
   240#endif
   241#ifdef GOOS_illumos
   242	// skip TLS setup on illumos
   243	JMP ok
   244#endif
   245#ifdef GOOS_darwin
   246	// skip TLS setup on Darwin
   247	JMP ok
   248#endif
   249#ifdef GOOS_openbsd
   250	// skip TLS setup on OpenBSD
   251	JMP ok
   252#endif
   253
   254#ifdef GOOS_windows
   255	CALL	runtime·wintls(SB)
   256#endif
   257
   258	LEAQ	runtime·m0+m_tls(SB), DI
   259	CALL	runtime·settls(SB)
   260
   261	// store through it, to make sure it works
   262	get_tls(BX)
   263	MOVQ	$0x123, g(BX)
   264	MOVQ	runtime·m0+m_tls(SB), AX
   265	CMPQ	AX, $0x123
   266	JEQ 2(PC)
   267	CALL	runtime·abort(SB)
   268ok:
   269	// set the per-goroutine and per-mach "registers"
   270	get_tls(BX)
   271	LEAQ	runtime·g0(SB), CX
   272	MOVQ	CX, g(BX)
   273	LEAQ	runtime·m0(SB), AX
   274
   275	// save m->g0 = g0
   276	MOVQ	CX, m_g0(AX)
   277	// save m0 to g0->m
   278	MOVQ	AX, g_m(CX)
   279
   280	CLD				// convention is D is always left cleared
   281
   282	// Check GOAMD64 requirements
   283	// We need to do this after setting up TLS, so that
   284	// we can report an error if there is a failure. See issue 49586.
   285#ifdef NEED_FEATURES_CX
   286	MOVL	$0, AX
   287	CPUID
   288	CMPL	AX, $0
   289	JE	bad_cpu
   290	MOVL	$1, AX
   291	CPUID
   292	ANDL	$NEED_FEATURES_CX, CX
   293	CMPL	CX, $NEED_FEATURES_CX
   294	JNE	bad_cpu
   295#endif
   296
   297#ifdef NEED_MAX_CPUID
   298	MOVL	$0x80000000, AX
   299	CPUID
   300	CMPL	AX, $NEED_MAX_CPUID
   301	JL	bad_cpu
   302#endif
   303
   304#ifdef NEED_EXT_FEATURES_BX
   305	MOVL	$7, AX
   306	MOVL	$0, CX
   307	CPUID
   308	ANDL	$NEED_EXT_FEATURES_BX, BX
   309	CMPL	BX, $NEED_EXT_FEATURES_BX
   310	JNE	bad_cpu
   311#endif
   312
   313#ifdef NEED_EXT_FEATURES_CX
   314	MOVL	$0x80000001, AX
   315	CPUID
   316	ANDL	$NEED_EXT_FEATURES_CX, CX
   317	CMPL	CX, $NEED_EXT_FEATURES_CX
   318	JNE	bad_cpu
   319#endif
   320
   321#ifdef NEED_OS_SUPPORT_AX
   322	XORL    CX, CX
   323	XGETBV
   324	ANDL	$NEED_OS_SUPPORT_AX, AX
   325	CMPL	AX, $NEED_OS_SUPPORT_AX
   326	JNE	bad_cpu
   327#endif
   328
   329#ifdef NEED_DARWIN_SUPPORT
   330	MOVQ	$commpage64_version, BX
   331	CMPW	(BX), $13  // cpu_capabilities64 undefined in versions < 13
   332	JL	bad_cpu
   333	MOVQ	$commpage64_cpu_capabilities64, BX
   334	MOVQ	(BX), BX
   335	MOVQ	$NEED_DARWIN_SUPPORT, CX
   336	ANDQ	CX, BX
   337	CMPQ	BX, CX
   338	JNE	bad_cpu
   339#endif
   340
   341	CALL	runtime·check(SB)
   342
   343	MOVL	24(SP), AX		// copy argc
   344	MOVL	AX, 0(SP)
   345	MOVQ	32(SP), AX		// copy argv
   346	MOVQ	AX, 8(SP)
   347	CALL	runtime·args(SB)
   348	CALL	runtime·osinit(SB)
   349	CALL	runtime·schedinit(SB)
   350
   351	// create a new goroutine to start program
   352	MOVQ	$runtime·mainPC(SB), AX		// entry
   353	PUSHQ	AX
   354	CALL	runtime·newproc(SB)
   355	POPQ	AX
   356
   357	// start this M
   358	CALL	runtime·mstart(SB)
   359
   360	CALL	runtime·abort(SB)	// mstart should never return
   361	RET
   362
   363bad_cpu: // show that the program requires a certain microarchitecture level.
   364	MOVQ	$2, 0(SP)
   365	MOVQ	$bad_cpu_msg<>(SB), AX
   366	MOVQ	AX, 8(SP)
   367	MOVQ	$84, 16(SP)
   368	CALL	runtime·write(SB)
   369	MOVQ	$1, 0(SP)
   370	CALL	runtime·exit(SB)
   371	CALL	runtime·abort(SB)
   372	RET
   373
   374	// Prevent dead-code elimination of debugCallV2 and debugPinnerV1, which are
   375	// intended to be called by debuggers.
   376	MOVQ	$runtime·debugPinnerV1<ABIInternal>(SB), AX
   377	MOVQ	$runtime·debugCallV2<ABIInternal>(SB), AX
   378	RET
   379
   380// mainPC is a function value for runtime.main, to be passed to newproc.
   381// The reference to runtime.main is made via ABIInternal, since the
   382// actual function (not the ABI0 wrapper) is needed by newproc.
   383DATA	runtime·mainPC+0(SB)/8,$runtime·main<ABIInternal>(SB)
   384GLOBL	runtime·mainPC(SB),RODATA,$8
   385
   386TEXT runtime·breakpoint(SB),NOSPLIT,$0-0
   387	BYTE	$0xcc
   388	RET
   389
   390TEXT runtime·asminit(SB),NOSPLIT,$0-0
   391	// No per-thread init.
   392	RET
   393
   394TEXT runtime·mstart(SB),NOSPLIT|TOPFRAME|NOFRAME,$0
   395	CALL	runtime·mstart0(SB)
   396	RET // not reached
   397
   398/*
   399 *  go-routine
   400 */
   401
   402// func gogo(buf *gobuf)
   403// restore state from Gobuf; longjmp
   404TEXT runtime·gogo(SB), NOSPLIT, $0-8
   405	MOVQ	buf+0(FP), BX		// gobuf
   406	MOVQ	gobuf_g(BX), DX
   407	MOVQ	0(DX), CX		// make sure g != nil
   408	JMP	gogo<>(SB)
   409
   410TEXT gogo<>(SB), NOSPLIT, $0
   411	get_tls(CX)
   412	MOVQ	DX, g(CX)
   413	MOVQ	DX, R14		// set the g register
   414	MOVQ	gobuf_sp(BX), SP	// restore SP
   415	MOVQ	gobuf_ctxt(BX), DX
   416	MOVQ	gobuf_bp(BX), BP
   417	MOVQ	$0, gobuf_sp(BX)	// clear to help garbage collector
   418	MOVQ	$0, gobuf_ctxt(BX)
   419	MOVQ	$0, gobuf_bp(BX)
   420	MOVQ	gobuf_pc(BX), BX
   421	JMP	BX
   422
   423// func mcall(fn func(*g))
   424// Switch to m->g0's stack, call fn(g).
   425// Fn must never return. It should gogo(&g->sched)
   426// to keep running g.
   427TEXT runtime·mcall<ABIInternal>(SB), NOSPLIT, $0-8
   428	MOVQ	AX, DX	// DX = fn
   429
   430	// Save state in g->sched. The caller's SP and PC are restored by gogo to
   431	// resume execution in the caller's frame (implicit return). The caller's BP
   432	// is also restored to support frame pointer unwinding.
   433	MOVQ	SP, BX	// hide (SP) reads from vet
   434	MOVQ	8(BX), BX	// caller's PC
   435	MOVQ	BX, (g_sched+gobuf_pc)(R14)
   436	LEAQ	fn+0(FP), BX	// caller's SP
   437	MOVQ	BX, (g_sched+gobuf_sp)(R14)
   438	// Get the caller's frame pointer by dereferencing BP. Storing BP as it is
   439	// can cause a frame pointer cycle, see CL 476235.
   440	MOVQ	(BP), BX // caller's BP
   441	MOVQ	BX, (g_sched+gobuf_bp)(R14)
   442
   443	// switch to m->g0 & its stack, call fn
   444	MOVQ	g_m(R14), BX
   445	MOVQ	m_g0(BX), SI	// SI = g.m.g0
   446	CMPQ	SI, R14	// if g == m->g0 call badmcall
   447	JNE	goodm
   448	JMP	runtime·badmcall(SB)
   449goodm:
   450	MOVQ	R14, AX		// AX (and arg 0) = g
   451	MOVQ	SI, R14		// g = g.m.g0
   452	get_tls(CX)		// Set G in TLS
   453	MOVQ	R14, g(CX)
   454	MOVQ	(g_sched+gobuf_sp)(R14), SP	// sp = g0.sched.sp
   455	MOVQ	$0, BP	// clear frame pointer, as caller may execute on another M
   456	PUSHQ	AX	// open up space for fn's arg spill slot
   457	MOVQ	0(DX), R12
   458	CALL	R12		// fn(g)
   459	// The Windows native stack unwinder incorrectly classifies the next instruction
   460	// as part of the function epilogue, producing a wrong call stack.
   461	// Add a NOP to work around this issue. See go.dev/issue/67007.
   462	BYTE	$0x90
   463	POPQ	AX
   464	JMP	runtime·badmcall2(SB)
   465	RET
   466
   467// systemstack_switch is a dummy routine that systemstack leaves at the bottom
   468// of the G stack. We need to distinguish the routine that
   469// lives at the bottom of the G stack from the one that lives
   470// at the top of the system stack because the one at the top of
   471// the system stack terminates the stack walk (see topofstack()).
   472// The frame layout needs to match systemstack
   473// so that it can pretend to be systemstack_switch.
   474TEXT runtime·systemstack_switch(SB), NOSPLIT, $0-0
   475	UNDEF
   476	// Make sure this function is not leaf,
   477	// so the frame is saved.
   478	CALL	runtime·abort(SB)
   479	RET
   480
   481// func systemstack(fn func())
   482TEXT runtime·systemstack(SB), NOSPLIT, $0-8
   483	MOVQ	fn+0(FP), DI	// DI = fn
   484	get_tls(CX)
   485	MOVQ	g(CX), AX	// AX = g
   486	MOVQ	g_m(AX), BX	// BX = m
   487
   488	CMPQ	AX, m_gsignal(BX)
   489	JEQ	noswitch
   490
   491	MOVQ	m_g0(BX), DX	// DX = g0
   492	CMPQ	AX, DX
   493	JEQ	noswitch
   494
   495	CMPQ	AX, m_curg(BX)
   496	JNE	bad
   497
   498	// Switch stacks.
   499	// The original frame pointer is stored in BP,
   500	// which is useful for stack unwinding.
   501	// Save our state in g->sched. Pretend to
   502	// be systemstack_switch if the G stack is scanned.
   503	CALL	gosave_systemstack_switch<>(SB)
   504
   505	// switch to g0
   506	MOVQ	DX, g(CX)
   507	MOVQ	DX, R14 // set the g register
   508	MOVQ	(g_sched+gobuf_sp)(DX), SP
   509
   510	// call target function
   511	MOVQ	DI, DX
   512	MOVQ	0(DI), DI
   513	CALL	DI
   514
   515	// switch back to g
   516	get_tls(CX)
   517	MOVQ	g(CX), AX
   518	MOVQ	g_m(AX), BX
   519	MOVQ	m_curg(BX), AX
   520	MOVQ	AX, g(CX)
   521	MOVQ	(g_sched+gobuf_sp)(AX), SP
   522	MOVQ	(g_sched+gobuf_bp)(AX), BP
   523	MOVQ	$0, (g_sched+gobuf_sp)(AX)
   524	MOVQ	$0, (g_sched+gobuf_bp)(AX)
   525	RET
   526
   527noswitch:
   528	// already on m stack; tail call the function
   529	// Using a tail call here cleans up tracebacks since we won't stop
   530	// at an intermediate systemstack.
   531	MOVQ	DI, DX
   532	MOVQ	0(DI), DI
   533	// The function epilogue is not called on a tail call.
   534	// Pop BP from the stack to simulate it.
   535	POPQ	BP
   536	JMP	DI
   537
   538bad:
   539	// Bad: g is not gsignal, not g0, not curg. What is it?
   540	MOVQ	$runtime·badsystemstack(SB), AX
   541	CALL	AX
   542	INT	$3
   543
   544// func switchToCrashStack0(fn func())
   545TEXT runtime·switchToCrashStack0<ABIInternal>(SB), NOSPLIT, $0-8
   546	MOVQ	g_m(R14), BX // curm
   547
   548	// set g to gcrash
   549	LEAQ	runtime·gcrash(SB), R14 // g = &gcrash
   550	MOVQ	BX, g_m(R14)            // g.m = curm
   551	MOVQ	R14, m_g0(BX)           // curm.g0 = g
   552	get_tls(CX)
   553	MOVQ	R14, g(CX)
   554
   555	// switch to crashstack
   556	MOVQ	(g_stack+stack_hi)(R14), BX
   557	SUBQ	$(4*8), BX
   558	MOVQ	BX, SP
   559
   560	// call target function
   561	MOVQ	AX, DX
   562	MOVQ	0(AX), AX
   563	CALL	AX
   564
   565	// should never return
   566	CALL	runtime·abort(SB)
   567	UNDEF
   568
   569/*
   570 * support for morestack
   571 */
   572
   573// Called during function prolog when more stack is needed.
   574//
   575// The traceback routines see morestack on a g0 as being
   576// the top of a stack (for example, morestack calling newstack
   577// calling the scheduler calling newm calling gc), so we must
   578// record an argument size. For that purpose, it has no arguments.
   579TEXT runtime·morestack(SB),NOSPLIT|NOFRAME,$0-0
   580	// Cannot grow scheduler stack (m->g0).
   581	get_tls(CX)
   582	MOVQ	g(CX), DI     // DI = g
   583	MOVQ	g_m(DI), BX   // BX = m
   584
   585	// Set g->sched to context in f.
   586	MOVQ	0(SP), AX // f's PC
   587	MOVQ	AX, (g_sched+gobuf_pc)(DI)
   588	LEAQ	8(SP), AX // f's SP
   589	MOVQ	AX, (g_sched+gobuf_sp)(DI)
   590	MOVQ	BP, (g_sched+gobuf_bp)(DI)
   591	MOVQ	DX, (g_sched+gobuf_ctxt)(DI)
   592
   593	MOVQ	m_g0(BX), SI  // SI = m.g0
   594	CMPQ	DI, SI
   595	JNE	3(PC)
   596	CALL	runtime·badmorestackg0(SB)
   597	CALL	runtime·abort(SB)
   598
   599	// Cannot grow signal stack (m->gsignal).
   600	MOVQ	m_gsignal(BX), SI
   601	CMPQ	DI, SI
   602	JNE	3(PC)
   603	CALL	runtime·badmorestackgsignal(SB)
   604	CALL	runtime·abort(SB)
   605
   606	// Called from f.
   607	// Set m->morebuf to f's caller.
   608	NOP	SP	// tell vet SP changed - stop checking offsets
   609	MOVQ	8(SP), AX	// f's caller's PC
   610	MOVQ	AX, (m_morebuf+gobuf_pc)(BX)
   611	LEAQ	16(SP), AX	// f's caller's SP
   612	MOVQ	AX, (m_morebuf+gobuf_sp)(BX)
   613	MOVQ	DI, (m_morebuf+gobuf_g)(BX)
   614
   615	// Call newstack on m->g0's stack.
   616	MOVQ	m_g0(BX), BX
   617	MOVQ	BX, g(CX)
   618	MOVQ	(g_sched+gobuf_sp)(BX), SP
   619	MOVQ	$0, BP			// clear frame pointer, as caller may execute on another M
   620	CALL	runtime·newstack(SB)
   621	CALL	runtime·abort(SB)	// crash if newstack returns
   622	RET
   623
   624// morestack but not preserving ctxt.
   625TEXT runtime·morestack_noctxt(SB),NOSPLIT,$0
   626	MOVL	$0, DX
   627	JMP	runtime·morestack(SB)
   628
   629// spillArgs stores return values from registers to a *internal/abi.RegArgs in R12.
   630TEXT ·spillArgs(SB),NOSPLIT,$0-0
   631	MOVQ AX, 0(R12)
   632	MOVQ BX, 8(R12)
   633	MOVQ CX, 16(R12)
   634	MOVQ DI, 24(R12)
   635	MOVQ SI, 32(R12)
   636	MOVQ R8, 40(R12)
   637	MOVQ R9, 48(R12)
   638	MOVQ R10, 56(R12)
   639	MOVQ R11, 64(R12)
   640	MOVQ X0, 72(R12)
   641	MOVQ X1, 80(R12)
   642	MOVQ X2, 88(R12)
   643	MOVQ X3, 96(R12)
   644	MOVQ X4, 104(R12)
   645	MOVQ X5, 112(R12)
   646	MOVQ X6, 120(R12)
   647	MOVQ X7, 128(R12)
   648	MOVQ X8, 136(R12)
   649	MOVQ X9, 144(R12)
   650	MOVQ X10, 152(R12)
   651	MOVQ X11, 160(R12)
   652	MOVQ X12, 168(R12)
   653	MOVQ X13, 176(R12)
   654	MOVQ X14, 184(R12)
   655	RET
   656
   657// unspillArgs loads args into registers from a *internal/abi.RegArgs in R12.
   658TEXT ·unspillArgs(SB),NOSPLIT,$0-0
   659	MOVQ 0(R12), AX
   660	MOVQ 8(R12), BX
   661	MOVQ 16(R12), CX
   662	MOVQ 24(R12), DI
   663	MOVQ 32(R12), SI
   664	MOVQ 40(R12), R8
   665	MOVQ 48(R12), R9
   666	MOVQ 56(R12), R10
   667	MOVQ 64(R12), R11
   668	MOVQ 72(R12), X0
   669	MOVQ 80(R12), X1
   670	MOVQ 88(R12), X2
   671	MOVQ 96(R12), X3
   672	MOVQ 104(R12), X4
   673	MOVQ 112(R12), X5
   674	MOVQ 120(R12), X6
   675	MOVQ 128(R12), X7
   676	MOVQ 136(R12), X8
   677	MOVQ 144(R12), X9
   678	MOVQ 152(R12), X10
   679	MOVQ 160(R12), X11
   680	MOVQ 168(R12), X12
   681	MOVQ 176(R12), X13
   682	MOVQ 184(R12), X14
   683	RET
   684
   685// reflectcall: call a function with the given argument list
   686// func call(stackArgsType *_type, f *FuncVal, stackArgs *byte, stackArgsSize, stackRetOffset, frameSize uint32, regArgs *abi.RegArgs).
   687// we don't have variable-sized frames, so we use a small number
   688// of constant-sized-frame functions to encode a few bits of size in the pc.
   689// Caution: ugly multiline assembly macros in your future!
   690
   691#define DISPATCH(NAME,MAXSIZE)		\
   692	CMPQ	CX, $MAXSIZE;		\
   693	JA	3(PC);			\
   694	MOVQ	$NAME(SB), AX;		\
   695	JMP	AX
   696// Note: can't just "JMP NAME(SB)" - bad inlining results.
   697
   698TEXT ·reflectcall(SB), NOSPLIT, $0-48
   699	MOVLQZX frameSize+32(FP), CX
   700	DISPATCH(runtime·call16, 16)
   701	DISPATCH(runtime·call32, 32)
   702	DISPATCH(runtime·call64, 64)
   703	DISPATCH(runtime·call128, 128)
   704	DISPATCH(runtime·call256, 256)
   705	DISPATCH(runtime·call512, 512)
   706	DISPATCH(runtime·call1024, 1024)
   707	DISPATCH(runtime·call2048, 2048)
   708	DISPATCH(runtime·call4096, 4096)
   709	DISPATCH(runtime·call8192, 8192)
   710	DISPATCH(runtime·call16384, 16384)
   711	DISPATCH(runtime·call32768, 32768)
   712	DISPATCH(runtime·call65536, 65536)
   713	DISPATCH(runtime·call131072, 131072)
   714	DISPATCH(runtime·call262144, 262144)
   715	DISPATCH(runtime·call524288, 524288)
   716	DISPATCH(runtime·call1048576, 1048576)
   717	DISPATCH(runtime·call2097152, 2097152)
   718	DISPATCH(runtime·call4194304, 4194304)
   719	DISPATCH(runtime·call8388608, 8388608)
   720	DISPATCH(runtime·call16777216, 16777216)
   721	DISPATCH(runtime·call33554432, 33554432)
   722	DISPATCH(runtime·call67108864, 67108864)
   723	DISPATCH(runtime·call134217728, 134217728)
   724	DISPATCH(runtime·call268435456, 268435456)
   725	DISPATCH(runtime·call536870912, 536870912)
   726	DISPATCH(runtime·call1073741824, 1073741824)
   727	MOVQ	$runtime·badreflectcall(SB), AX
   728	JMP	AX
   729
   730#define CALLFN(NAME,MAXSIZE)			\
   731TEXT NAME(SB), WRAPPER, $MAXSIZE-48;		\
   732	NO_LOCAL_POINTERS;			\
   733	/* copy arguments to stack */		\
   734	MOVQ	stackArgs+16(FP), SI;		\
   735	MOVLQZX stackArgsSize+24(FP), CX;		\
   736	MOVQ	SP, DI;				\
   737	REP;MOVSB;				\
   738	/* set up argument registers */		\
   739	MOVQ    regArgs+40(FP), R12;		\
   740	CALL    ·unspillArgs(SB);		\
   741	/* call function */			\
   742	MOVQ	f+8(FP), DX;			\
   743	PCDATA  $PCDATA_StackMapIndex, $0;	\
   744	MOVQ	(DX), R12;			\
   745	CALL	R12;				\
   746	/* copy register return values back */		\
   747	MOVQ    regArgs+40(FP), R12;		\
   748	CALL    ·spillArgs(SB);		\
   749	MOVLQZX	stackArgsSize+24(FP), CX;		\
   750	MOVLQZX	stackRetOffset+28(FP), BX;		\
   751	MOVQ	stackArgs+16(FP), DI;		\
   752	MOVQ	stackArgsType+0(FP), DX;		\
   753	MOVQ	SP, SI;				\
   754	ADDQ	BX, DI;				\
   755	ADDQ	BX, SI;				\
   756	SUBQ	BX, CX;				\
   757	CALL	callRet<>(SB);			\
   758	RET
   759
   760// callRet copies return values back at the end of call*. This is a
   761// separate function so it can allocate stack space for the arguments
   762// to reflectcallmove. It does not follow the Go ABI; it expects its
   763// arguments in registers.
   764TEXT callRet<>(SB), NOSPLIT, $40-0
   765	NO_LOCAL_POINTERS
   766	MOVQ	DX, 0(SP)
   767	MOVQ	DI, 8(SP)
   768	MOVQ	SI, 16(SP)
   769	MOVQ	CX, 24(SP)
   770	MOVQ	R12, 32(SP)
   771	CALL	runtime·reflectcallmove(SB)
   772	RET
   773
   774CALLFN(·call16, 16)
   775CALLFN(·call32, 32)
   776CALLFN(·call64, 64)
   777CALLFN(·call128, 128)
   778CALLFN(·call256, 256)
   779CALLFN(·call512, 512)
   780CALLFN(·call1024, 1024)
   781CALLFN(·call2048, 2048)
   782CALLFN(·call4096, 4096)
   783CALLFN(·call8192, 8192)
   784CALLFN(·call16384, 16384)
   785CALLFN(·call32768, 32768)
   786CALLFN(·call65536, 65536)
   787CALLFN(·call131072, 131072)
   788CALLFN(·call262144, 262144)
   789CALLFN(·call524288, 524288)
   790CALLFN(·call1048576, 1048576)
   791CALLFN(·call2097152, 2097152)
   792CALLFN(·call4194304, 4194304)
   793CALLFN(·call8388608, 8388608)
   794CALLFN(·call16777216, 16777216)
   795CALLFN(·call33554432, 33554432)
   796CALLFN(·call67108864, 67108864)
   797CALLFN(·call134217728, 134217728)
   798CALLFN(·call268435456, 268435456)
   799CALLFN(·call536870912, 536870912)
   800CALLFN(·call1073741824, 1073741824)
   801
   802TEXT runtime·procyield(SB),NOSPLIT,$0-0
   803	MOVL	cycles+0(FP), AX
   804again:
   805	PAUSE
   806	SUBL	$1, AX
   807	JNZ	again
   808	RET
   809
   810
   811TEXT ·publicationBarrier<ABIInternal>(SB),NOSPLIT,$0-0
   812	// Stores are already ordered on x86, so this is just a
   813	// compile barrier.
   814	RET
   815
   816// Save state of caller into g->sched,
   817// but using fake PC from systemstack_switch.
   818// Must only be called from functions with frame pointer
   819// and without locals ($0) or else unwinding from
   820// systemstack_switch is incorrect.
   821// Smashes R9.
   822TEXT gosave_systemstack_switch<>(SB),NOSPLIT|NOFRAME,$0
   823	// Take systemstack_switch PC and add 8 bytes to skip
   824	// the prologue. The final location does not matter
   825	// as long as we are between the prologue and the epilogue.
   826	MOVQ	$runtime·systemstack_switch+8(SB), R9
   827	MOVQ	R9, (g_sched+gobuf_pc)(R14)
   828	LEAQ	8(SP), R9
   829	MOVQ	R9, (g_sched+gobuf_sp)(R14)
   830	MOVQ	BP, (g_sched+gobuf_bp)(R14)
   831	// Assert ctxt is zero. See func save.
   832	MOVQ	(g_sched+gobuf_ctxt)(R14), R9
   833	TESTQ	R9, R9
   834	JZ	2(PC)
   835	CALL	runtime·abort(SB)
   836	RET
   837
   838// func asmcgocall_no_g(fn, arg unsafe.Pointer)
   839// Call fn(arg) aligned appropriately for the gcc ABI.
   840// Called on a system stack, and there may be no g yet (during needm).
   841TEXT ·asmcgocall_no_g(SB),NOSPLIT,$32-16
   842	MOVQ	fn+0(FP), AX
   843	MOVQ	arg+8(FP), BX
   844	MOVQ	SP, DX
   845	ANDQ	$~15, SP	// alignment
   846	MOVQ	DX, 8(SP)
   847	MOVQ	BX, DI		// DI = first argument in AMD64 ABI
   848	MOVQ	BX, CX		// CX = first argument in Win64
   849	CALL	AX
   850	MOVQ	8(SP), DX
   851	MOVQ	DX, SP
   852	RET
   853
   854// asmcgocall_landingpad calls AX with BX as argument.
   855// Must be called on the system stack.
   856TEXT ·asmcgocall_landingpad(SB),NOSPLIT,$0-0
   857#ifdef GOOS_windows
   858	// Make sure we have enough room for 4 stack-backed fast-call
   859	// registers as per Windows amd64 calling convention.
   860	ADJSP	$32
   861	// On Windows, asmcgocall_landingpad acts as landing pad for exceptions
   862	// thrown in the cgo call. Exceptions that reach this function will be
   863	// handled by runtime.sehtramp thanks to the SEH metadata added
   864	// by the compiler.
   865	// Note that runtime.sehtramp can't be attached directly to asmcgocall
   866	// because its initial stack pointer can be outside the system stack bounds,
   867	// and Windows stops the stack unwinding without calling the exception handler
   868	// when it reaches that point.
   869	MOVQ	BX, CX		// CX = first argument in Win64
   870	CALL	AX
   871	// The exception handler is not called if the next instruction is part of
   872	// the epilogue, which includes the RET instruction, so we need to add a NOP here.
   873	BYTE	$0x90
   874	ADJSP	$-32
   875	RET
   876#endif
   877	// Tail call AX on non-Windows, as the extra stack frame is not needed.
   878	MOVQ	BX, DI		// DI = first argument in AMD64 ABI
   879	JMP	AX
   880
   881// func asmcgocall(fn, arg unsafe.Pointer) int32
   882// Call fn(arg) on the scheduler stack,
   883// aligned appropriately for the gcc ABI.
   884// See cgocall.go for more details.
   885TEXT ·asmcgocall(SB),NOSPLIT,$0-20
   886	MOVQ	fn+0(FP), AX
   887	MOVQ	arg+8(FP), BX
   888
   889	MOVQ	SP, DX
   890
   891	// Figure out if we need to switch to m->g0 stack.
   892	// We get called to create new OS threads too, and those
   893	// come in on the m->g0 stack already. Or we might already
   894	// be on the m->gsignal stack.
   895	get_tls(CX)
   896	MOVQ	g(CX), DI
   897	CMPQ	DI, $0
   898	JEQ	nosave
   899	MOVQ	g_m(DI), R8
   900	MOVQ	m_gsignal(R8), SI
   901	CMPQ	DI, SI
   902	JEQ	nosave
   903	MOVQ	m_g0(R8), SI
   904	CMPQ	DI, SI
   905	JEQ	nosave
   906
   907	// Switch to system stack.
   908	// The original frame pointer is stored in BP,
   909	// which is useful for stack unwinding.
   910	CALL	gosave_systemstack_switch<>(SB)
   911	MOVQ	SI, g(CX)
   912	MOVQ	(g_sched+gobuf_sp)(SI), SP
   913
   914	// Now on a scheduling stack (a pthread-created stack).
   915	SUBQ	$16, SP
   916	ANDQ	$~15, SP	// alignment for gcc ABI
   917	MOVQ	DI, 8(SP)	// save g
   918	MOVQ	(g_stack+stack_hi)(DI), DI
   919	SUBQ	DX, DI
   920	MOVQ	DI, 0(SP)	// save depth in stack (can't just save SP, as stack might be copied during a callback)
   921	CALL	runtime·asmcgocall_landingpad(SB)
   922
   923	// Restore registers, g, stack pointer.
   924	get_tls(CX)
   925	MOVQ	8(SP), DI
   926	MOVQ	(g_stack+stack_hi)(DI), SI
   927	SUBQ	0(SP), SI
   928	MOVQ	DI, g(CX)
   929	MOVQ	SI, SP
   930
   931	MOVL	AX, ret+16(FP)
   932	RET
   933
   934nosave:
   935	// Running on a system stack, perhaps even without a g.
   936	// Having no g can happen during thread creation or thread teardown
   937	// (see needm/dropm on Solaris, for example).
   938	// This code is like the above sequence but without saving/restoring g
   939	// and without worrying about the stack moving out from under us
   940	// (because we're on a system stack, not a goroutine stack).
   941	// The above code could be used directly if already on a system stack,
   942	// but then the only path through this code would be a rare case on Solaris.
   943	// Using this code for all "already on system stack" calls exercises it more,
   944	// which should help keep it correct.
   945	SUBQ	$16, SP
   946	ANDQ	$~15, SP
   947	MOVQ	$0, 8(SP)		// where above code stores g, in case someone looks during debugging
   948	MOVQ	DX, 0(SP)	// save original stack pointer
   949	CALL	runtime·asmcgocall_landingpad(SB)
   950	MOVQ	0(SP), SI	// restore original stack pointer
   951	MOVQ	SI, SP
   952	MOVL	AX, ret+16(FP)
   953	RET
   954
   955#ifdef GOOS_windows
   956// Dummy TLS that's used on Windows so that we don't crash trying
   957// to restore the G register in needm. needm and its callees are
   958// very careful never to actually use the G, the TLS just can't be
   959// unset since we're in Go code.
   960GLOBL zeroTLS<>(SB),RODATA,$const_tlsSize
   961#endif
   962
   963// func cgocallback(fn, frame unsafe.Pointer, ctxt uintptr)
   964// See cgocall.go for more details.
   965TEXT ·cgocallback(SB),NOSPLIT,$24-24
   966	NO_LOCAL_POINTERS
   967
   968	// Skip cgocallbackg, just dropm when fn is nil, and frame is the saved g.
   969	// It is used to dropm while thread is exiting.
   970	MOVQ	fn+0(FP), AX
   971	CMPQ	AX, $0
   972	JNE	loadg
   973	// Restore the g from frame.
   974	get_tls(CX)
   975	MOVQ	frame+8(FP), BX
   976	MOVQ	BX, g(CX)
   977	JMP	dropm
   978
   979loadg:
   980	// If g is nil, Go did not create the current thread,
   981	// or if this thread never called into Go on pthread platforms.
   982	// Call needm to obtain one m for temporary use.
   983	// In this case, we're running on the thread stack, so there's
   984	// lots of space, but the linker doesn't know. Hide the call from
   985	// the linker analysis by using an indirect call through AX.
   986	get_tls(CX)
   987#ifdef GOOS_windows
   988	MOVL	$0, BX
   989	CMPQ	CX, $0
   990	JEQ	2(PC)
   991#endif
   992	MOVQ	g(CX), BX
   993	CMPQ	BX, $0
   994	JEQ	needm
   995	MOVQ	g_m(BX), BX
   996	MOVQ	BX, savedm-8(SP)	// saved copy of oldm
   997	JMP	havem
   998needm:
   999#ifdef GOOS_windows
  1000	// Set up a dummy TLS value. needm is careful not to use it,
  1001	// but it needs to be there to prevent autogenerated code from
  1002	// crashing when it loads from it.
  1003	// We don't need to clear it or anything later because needm
  1004	// will set up TLS properly.
  1005	MOVQ	$zeroTLS<>(SB), DI
  1006	CALL	runtime·settls(SB)
  1007#endif
  1008	// On some platforms (Windows) we cannot call needm through
  1009	// an ABI wrapper because there's no TLS set up, and the ABI
  1010	// wrapper will try to restore the G register (R14) from TLS.
  1011	// Clear X15 because Go expects it and we're not calling
  1012	// through a wrapper, but otherwise avoid setting the G
  1013	// register in the wrapper and call needm directly. It
  1014	// takes no arguments and doesn't return any values so
  1015	// there's no need to handle that. Clear R14 so that there's
  1016	// a bad value in there, in case needm tries to use it.
  1017	XORPS	X15, X15
  1018	XORQ    R14, R14
  1019	MOVQ	$runtime·needAndBindM<ABIInternal>(SB), AX
  1020	CALL	AX
  1021	MOVQ	$0, savedm-8(SP)
  1022	get_tls(CX)
  1023	MOVQ	g(CX), BX
  1024	MOVQ	g_m(BX), BX
  1025
  1026	// Set m->sched.sp = SP, so that if a panic happens
  1027	// during the function we are about to execute, it will
  1028	// have a valid SP to run on the g0 stack.
  1029	// The next few lines (after the havem label)
  1030	// will save this SP onto the stack and then write
  1031	// the same SP back to m->sched.sp. That seems redundant,
  1032	// but if an unrecovered panic happens, unwindm will
  1033	// restore the g->sched.sp from the stack location
  1034	// and then systemstack will try to use it. If we don't set it here,
  1035	// that restored SP will be uninitialized (typically 0) and
  1036	// will not be usable.
  1037	MOVQ	m_g0(BX), SI
  1038	MOVQ	SP, (g_sched+gobuf_sp)(SI)
  1039
  1040havem:
  1041	// Now there's a valid m, and we're running on its m->g0.
  1042	// Save current m->g0->sched.sp on stack and then set it to SP.
  1043	// Save current sp in m->g0->sched.sp in preparation for
  1044	// switch back to m->curg stack.
  1045	// NOTE: unwindm knows that the saved g->sched.sp is at 0(SP).
  1046	MOVQ	m_g0(BX), SI
  1047	MOVQ	(g_sched+gobuf_sp)(SI), AX
  1048	MOVQ	AX, 0(SP)
  1049	MOVQ	SP, (g_sched+gobuf_sp)(SI)
  1050
  1051	// Switch to m->curg stack and call runtime.cgocallbackg.
  1052	// Because we are taking over the execution of m->curg
  1053	// but *not* resuming what had been running, we need to
  1054	// save that information (m->curg->sched) so we can restore it.
  1055	// We can restore m->curg->sched.sp easily, because calling
  1056	// runtime.cgocallbackg leaves SP unchanged upon return.
  1057	// To save m->curg->sched.pc, we push it onto the curg stack and
  1058	// open a frame the same size as cgocallback's g0 frame.
  1059	// Once we switch to the curg stack, the pushed PC will appear
  1060	// to be the return PC of cgocallback, so that the traceback
  1061	// will seamlessly trace back into the earlier calls.
  1062	MOVQ	m_curg(BX), SI
  1063	MOVQ	SI, g(CX)
  1064	MOVQ	(g_sched+gobuf_sp)(SI), DI  // prepare stack as DI
  1065	MOVQ	(g_sched+gobuf_pc)(SI), BX
  1066	MOVQ	BX, -8(DI)  // "push" return PC on the g stack
  1067	// Gather our arguments into registers.
  1068	MOVQ	fn+0(FP), BX
  1069	MOVQ	frame+8(FP), CX
  1070	MOVQ	ctxt+16(FP), DX
  1071	// Compute the size of the frame, including return PC and, if
  1072	// GOEXPERIMENT=framepointer, the saved base pointer
  1073	LEAQ	fn+0(FP), AX
  1074	SUBQ	SP, AX   // AX is our actual frame size
  1075	SUBQ	AX, DI   // Allocate the same frame size on the g stack
  1076	MOVQ	DI, SP
  1077
  1078	MOVQ	BX, 0(SP)
  1079	MOVQ	CX, 8(SP)
  1080	MOVQ	DX, 16(SP)
  1081	MOVQ	$runtime·cgocallbackg(SB), AX
  1082	CALL	AX	// indirect call to bypass nosplit check. We're on a different stack now.
  1083
  1084	// Compute the size of the frame again. FP and SP have
  1085	// completely different values here than they did above,
  1086	// but only their difference matters.
  1087	LEAQ	fn+0(FP), AX
  1088	SUBQ	SP, AX
  1089
  1090	// Restore g->sched (== m->curg->sched) from saved values.
  1091	get_tls(CX)
  1092	MOVQ	g(CX), SI
  1093	MOVQ	SP, DI
  1094	ADDQ	AX, DI
  1095	MOVQ	-8(DI), BX
  1096	MOVQ	BX, (g_sched+gobuf_pc)(SI)
  1097	MOVQ	DI, (g_sched+gobuf_sp)(SI)
  1098
  1099	// Switch back to m->g0's stack and restore m->g0->sched.sp.
  1100	// (Unlike m->curg, the g0 goroutine never uses sched.pc,
  1101	// so we do not have to restore it.)
  1102	MOVQ	g(CX), BX
  1103	MOVQ	g_m(BX), BX
  1104	MOVQ	m_g0(BX), SI
  1105	MOVQ	SI, g(CX)
  1106	MOVQ	(g_sched+gobuf_sp)(SI), SP
  1107	MOVQ	0(SP), AX
  1108	MOVQ	AX, (g_sched+gobuf_sp)(SI)
  1109
  1110	// If the m on entry was nil, we called needm above to borrow an m,
  1111	// 1. for the duration of the call on non-pthread platforms,
  1112	// 2. or the duration of the C thread alive on pthread platforms.
  1113	// If the m on entry wasn't nil,
  1114	// 1. the thread might be a Go thread,
  1115	// 2. or it wasn't the first call from a C thread on pthread platforms,
  1116	//    since then we skip dropm to reuse the m in the first call.
  1117	MOVQ	savedm-8(SP), BX
  1118	CMPQ	BX, $0
  1119	JNE	done
  1120
  1121	// Skip dropm to reuse it in the next call, when a pthread key has been created.
  1122	MOVQ	_cgo_pthread_key_created(SB), AX
  1123	// It means cgo is disabled when _cgo_pthread_key_created is a nil pointer, need dropm.
  1124	CMPQ	AX, $0
  1125	JEQ	dropm
  1126	CMPQ	(AX), $0
  1127	JNE	done
  1128
  1129dropm:
  1130	MOVQ	$runtime·dropm(SB), AX
  1131	CALL	AX
  1132#ifdef GOOS_windows
  1133	// We need to clear the TLS pointer in case the next
  1134	// thread that comes into Go tries to reuse that space
  1135	// but uses the same M.
  1136	XORQ	DI, DI
  1137	CALL	runtime·settls(SB)
  1138#endif
  1139done:
  1140
  1141	// Done!
  1142	RET
  1143
  1144// func setg(gg *g)
  1145// set g. for use by needm.
  1146TEXT runtime·setg(SB), NOSPLIT, $0-8
  1147	MOVQ	gg+0(FP), BX
  1148	get_tls(CX)
  1149	MOVQ	BX, g(CX)
  1150	RET
  1151
  1152// void setg_gcc(G*); set g called from gcc.
  1153TEXT setg_gcc<>(SB),NOSPLIT,$0
  1154	get_tls(AX)
  1155	MOVQ	DI, g(AX)
  1156	MOVQ	DI, R14 // set the g register
  1157	RET
  1158
  1159TEXT runtime·abort(SB),NOSPLIT,$0-0
  1160	INT	$3
  1161loop:
  1162	JMP	loop
  1163
  1164// check that SP is in range [g->stack.lo, g->stack.hi)
  1165TEXT runtime·stackcheck(SB), NOSPLIT|NOFRAME, $0-0
  1166	get_tls(CX)
  1167	MOVQ	g(CX), AX
  1168	CMPQ	(g_stack+stack_hi)(AX), SP
  1169	JHI	2(PC)
  1170	CALL	runtime·abort(SB)
  1171	CMPQ	SP, (g_stack+stack_lo)(AX)
  1172	JHI	2(PC)
  1173	CALL	runtime·abort(SB)
  1174	RET
  1175
  1176// func cputicks() int64
  1177TEXT runtime·cputicks(SB),NOSPLIT,$0-0
  1178	CMPB	internal∕cpu·X86+const_offsetX86HasRDTSCP(SB), $1
  1179	JNE	fences
  1180	// Instruction stream serializing RDTSCP is supported.
  1181	// RDTSCP is supported by Intel Nehalem (2008) and
  1182	// AMD K8 Rev. F (2006) and newer.
  1183	RDTSCP
  1184done:
  1185	SHLQ	$32, DX
  1186	ADDQ	DX, AX
  1187	MOVQ	AX, ret+0(FP)
  1188	RET
  1189fences:
  1190	// MFENCE is instruction stream serializing and flushes the
  1191	// store buffers on AMD. The serialization semantics of LFENCE on AMD
  1192	// are dependent on MSR C001_1029 and CPU generation.
  1193	// LFENCE on Intel does wait for all previous instructions to have executed.
  1194	// Intel recommends MFENCE;LFENCE in its manuals before RDTSC to have all
  1195	// previous instructions executed and all previous loads and stores to globally visible.
  1196	// Using MFENCE;LFENCE here aligns the serializing properties without
  1197	// runtime detection of CPU manufacturer.
  1198	MFENCE
  1199	LFENCE
  1200	RDTSC
  1201	JMP done
  1202
  1203// func memhash(p unsafe.Pointer, h, s uintptr) uintptr
  1204// hash function using AES hardware instructions
  1205TEXT runtime·memhash<ABIInternal>(SB),NOSPLIT,$0-32
  1206	// AX = ptr to data
  1207	// BX = seed
  1208	// CX = size
  1209	CMPB	runtime·useAeshash(SB), $0
  1210	JEQ	noaes
  1211	JMP	aeshashbody<>(SB)
  1212noaes:
  1213	JMP	runtime·memhashFallback<ABIInternal>(SB)
  1214
  1215// func strhash(p unsafe.Pointer, h uintptr) uintptr
  1216TEXT runtime·strhash<ABIInternal>(SB),NOSPLIT,$0-24
  1217	// AX = ptr to string struct
  1218	// BX = seed
  1219	CMPB	runtime·useAeshash(SB), $0
  1220	JEQ	noaes
  1221	MOVQ	8(AX), CX	// length of string
  1222	MOVQ	(AX), AX	// string data
  1223	JMP	aeshashbody<>(SB)
  1224noaes:
  1225	JMP	runtime·strhashFallback<ABIInternal>(SB)
  1226
  1227// AX: data
  1228// BX: hash seed
  1229// CX: length
  1230// At return: AX = return value
  1231TEXT aeshashbody<>(SB),NOSPLIT,$0-0
  1232	// Fill an SSE register with our seeds.
  1233	MOVQ	BX, X0				// 64 bits of per-table hash seed
  1234	PINSRW	$4, CX, X0			// 16 bits of length
  1235	PSHUFHW $0, X0, X0			// repeat length 4 times total
  1236	MOVO	X0, X1				// save unscrambled seed
  1237	PXOR	runtime·aeskeysched(SB), X0	// xor in per-process seed
  1238	AESENC	X0, X0				// scramble seed
  1239
  1240	CMPQ	CX, $16
  1241	JB	aes0to15
  1242	JE	aes16
  1243	CMPQ	CX, $32
  1244	JBE	aes17to32
  1245	CMPQ	CX, $64
  1246	JBE	aes33to64
  1247	CMPQ	CX, $128
  1248	JBE	aes65to128
  1249	JMP	aes129plus
  1250
  1251aes0to15:
  1252	TESTQ	CX, CX
  1253	JE	aes0
  1254
  1255	ADDQ	$16, AX
  1256	TESTW	$0xff0, AX
  1257	JE	endofpage
  1258
  1259	// 16 bytes loaded at this address won't cross
  1260	// a page boundary, so we can load it directly.
  1261	MOVOU	-16(AX), X1
  1262	ADDQ	CX, CX
  1263	MOVQ	$masks<>(SB), AX
  1264	PAND	(AX)(CX*8), X1
  1265final1:
  1266	PXOR	X0, X1	// xor data with seed
  1267	AESENC	X1, X1	// scramble combo 3 times
  1268	AESENC	X1, X1
  1269	AESENC	X1, X1
  1270	MOVQ	X1, AX	// return X1
  1271	RET
  1272
  1273endofpage:
  1274	// address ends in 1111xxxx. Might be up against
  1275	// a page boundary, so load ending at last byte.
  1276	// Then shift bytes down using pshufb.
  1277	MOVOU	-32(AX)(CX*1), X1
  1278	ADDQ	CX, CX
  1279	MOVQ	$shifts<>(SB), AX
  1280	PSHUFB	(AX)(CX*8), X1
  1281	JMP	final1
  1282
  1283aes0:
  1284	// Return scrambled input seed
  1285	AESENC	X0, X0
  1286	MOVQ	X0, AX	// return X0
  1287	RET
  1288
  1289aes16:
  1290	MOVOU	(AX), X1
  1291	JMP	final1
  1292
  1293aes17to32:
  1294	// make second starting seed
  1295	PXOR	runtime·aeskeysched+16(SB), X1
  1296	AESENC	X1, X1
  1297
  1298	// load data to be hashed
  1299	MOVOU	(AX), X2
  1300	MOVOU	-16(AX)(CX*1), X3
  1301
  1302	// xor with seed
  1303	PXOR	X0, X2
  1304	PXOR	X1, X3
  1305
  1306	// scramble 3 times
  1307	AESENC	X2, X2
  1308	AESENC	X3, X3
  1309	AESENC	X2, X2
  1310	AESENC	X3, X3
  1311	AESENC	X2, X2
  1312	AESENC	X3, X3
  1313
  1314	// combine results
  1315	PXOR	X3, X2
  1316	MOVQ	X2, AX	// return X2
  1317	RET
  1318
  1319aes33to64:
  1320	// make 3 more starting seeds
  1321	MOVO	X1, X2
  1322	MOVO	X1, X3
  1323	PXOR	runtime·aeskeysched+16(SB), X1
  1324	PXOR	runtime·aeskeysched+32(SB), X2
  1325	PXOR	runtime·aeskeysched+48(SB), X3
  1326	AESENC	X1, X1
  1327	AESENC	X2, X2
  1328	AESENC	X3, X3
  1329
  1330	MOVOU	(AX), X4
  1331	MOVOU	16(AX), X5
  1332	MOVOU	-32(AX)(CX*1), X6
  1333	MOVOU	-16(AX)(CX*1), X7
  1334
  1335	PXOR	X0, X4
  1336	PXOR	X1, X5
  1337	PXOR	X2, X6
  1338	PXOR	X3, X7
  1339
  1340	AESENC	X4, X4
  1341	AESENC	X5, X5
  1342	AESENC	X6, X6
  1343	AESENC	X7, X7
  1344
  1345	AESENC	X4, X4
  1346	AESENC	X5, X5
  1347	AESENC	X6, X6
  1348	AESENC	X7, X7
  1349
  1350	AESENC	X4, X4
  1351	AESENC	X5, X5
  1352	AESENC	X6, X6
  1353	AESENC	X7, X7
  1354
  1355	PXOR	X6, X4
  1356	PXOR	X7, X5
  1357	PXOR	X5, X4
  1358	MOVQ	X4, AX	// return X4
  1359	RET
  1360
  1361aes65to128:
  1362	// make 7 more starting seeds
  1363	MOVO	X1, X2
  1364	MOVO	X1, X3
  1365	MOVO	X1, X4
  1366	MOVO	X1, X5
  1367	MOVO	X1, X6
  1368	MOVO	X1, X7
  1369	PXOR	runtime·aeskeysched+16(SB), X1
  1370	PXOR	runtime·aeskeysched+32(SB), X2
  1371	PXOR	runtime·aeskeysched+48(SB), X3
  1372	PXOR	runtime·aeskeysched+64(SB), X4
  1373	PXOR	runtime·aeskeysched+80(SB), X5
  1374	PXOR	runtime·aeskeysched+96(SB), X6
  1375	PXOR	runtime·aeskeysched+112(SB), X7
  1376	AESENC	X1, X1
  1377	AESENC	X2, X2
  1378	AESENC	X3, X3
  1379	AESENC	X4, X4
  1380	AESENC	X5, X5
  1381	AESENC	X6, X6
  1382	AESENC	X7, X7
  1383
  1384	// load data
  1385	MOVOU	(AX), X8
  1386	MOVOU	16(AX), X9
  1387	MOVOU	32(AX), X10
  1388	MOVOU	48(AX), X11
  1389	MOVOU	-64(AX)(CX*1), X12
  1390	MOVOU	-48(AX)(CX*1), X13
  1391	MOVOU	-32(AX)(CX*1), X14
  1392	MOVOU	-16(AX)(CX*1), X15
  1393
  1394	// xor with seed
  1395	PXOR	X0, X8
  1396	PXOR	X1, X9
  1397	PXOR	X2, X10
  1398	PXOR	X3, X11
  1399	PXOR	X4, X12
  1400	PXOR	X5, X13
  1401	PXOR	X6, X14
  1402	PXOR	X7, X15
  1403
  1404	// scramble 3 times
  1405	AESENC	X8, X8
  1406	AESENC	X9, X9
  1407	AESENC	X10, X10
  1408	AESENC	X11, X11
  1409	AESENC	X12, X12
  1410	AESENC	X13, X13
  1411	AESENC	X14, X14
  1412	AESENC	X15, X15
  1413
  1414	AESENC	X8, X8
  1415	AESENC	X9, X9
  1416	AESENC	X10, X10
  1417	AESENC	X11, X11
  1418	AESENC	X12, X12
  1419	AESENC	X13, X13
  1420	AESENC	X14, X14
  1421	AESENC	X15, X15
  1422
  1423	AESENC	X8, X8
  1424	AESENC	X9, X9
  1425	AESENC	X10, X10
  1426	AESENC	X11, X11
  1427	AESENC	X12, X12
  1428	AESENC	X13, X13
  1429	AESENC	X14, X14
  1430	AESENC	X15, X15
  1431
  1432	// combine results
  1433	PXOR	X12, X8
  1434	PXOR	X13, X9
  1435	PXOR	X14, X10
  1436	PXOR	X15, X11
  1437	PXOR	X10, X8
  1438	PXOR	X11, X9
  1439	PXOR	X9, X8
  1440	// X15 must be zero on return
  1441	PXOR	X15, X15
  1442	MOVQ	X8, AX	// return X8
  1443	RET
  1444
  1445aes129plus:
  1446	// make 7 more starting seeds
  1447	MOVO	X1, X2
  1448	MOVO	X1, X3
  1449	MOVO	X1, X4
  1450	MOVO	X1, X5
  1451	MOVO	X1, X6
  1452	MOVO	X1, X7
  1453	PXOR	runtime·aeskeysched+16(SB), X1
  1454	PXOR	runtime·aeskeysched+32(SB), X2
  1455	PXOR	runtime·aeskeysched+48(SB), X3
  1456	PXOR	runtime·aeskeysched+64(SB), X4
  1457	PXOR	runtime·aeskeysched+80(SB), X5
  1458	PXOR	runtime·aeskeysched+96(SB), X6
  1459	PXOR	runtime·aeskeysched+112(SB), X7
  1460	AESENC	X1, X1
  1461	AESENC	X2, X2
  1462	AESENC	X3, X3
  1463	AESENC	X4, X4
  1464	AESENC	X5, X5
  1465	AESENC	X6, X6
  1466	AESENC	X7, X7
  1467
  1468	// start with last (possibly overlapping) block
  1469	MOVOU	-128(AX)(CX*1), X8
  1470	MOVOU	-112(AX)(CX*1), X9
  1471	MOVOU	-96(AX)(CX*1), X10
  1472	MOVOU	-80(AX)(CX*1), X11
  1473	MOVOU	-64(AX)(CX*1), X12
  1474	MOVOU	-48(AX)(CX*1), X13
  1475	MOVOU	-32(AX)(CX*1), X14
  1476	MOVOU	-16(AX)(CX*1), X15
  1477
  1478	// xor in seed
  1479	PXOR	X0, X8
  1480	PXOR	X1, X9
  1481	PXOR	X2, X10
  1482	PXOR	X3, X11
  1483	PXOR	X4, X12
  1484	PXOR	X5, X13
  1485	PXOR	X6, X14
  1486	PXOR	X7, X15
  1487
  1488	// compute number of remaining 128-byte blocks
  1489	DECQ	CX
  1490	SHRQ	$7, CX
  1491
  1492	PCALIGN $16
  1493aesloop:
  1494	// scramble state
  1495	AESENC	X8, X8
  1496	AESENC	X9, X9
  1497	AESENC	X10, X10
  1498	AESENC	X11, X11
  1499	AESENC	X12, X12
  1500	AESENC	X13, X13
  1501	AESENC	X14, X14
  1502	AESENC	X15, X15
  1503
  1504	// scramble state, xor in a block
  1505	MOVOU	(AX), X0
  1506	MOVOU	16(AX), X1
  1507	MOVOU	32(AX), X2
  1508	MOVOU	48(AX), X3
  1509	AESENC	X0, X8
  1510	AESENC	X1, X9
  1511	AESENC	X2, X10
  1512	AESENC	X3, X11
  1513	MOVOU	64(AX), X4
  1514	MOVOU	80(AX), X5
  1515	MOVOU	96(AX), X6
  1516	MOVOU	112(AX), X7
  1517	AESENC	X4, X12
  1518	AESENC	X5, X13
  1519	AESENC	X6, X14
  1520	AESENC	X7, X15
  1521
  1522	ADDQ	$128, AX
  1523	DECQ	CX
  1524	JNE	aesloop
  1525
  1526	// 3 more scrambles to finish
  1527	AESENC	X8, X8
  1528	AESENC	X9, X9
  1529	AESENC	X10, X10
  1530	AESENC	X11, X11
  1531	AESENC	X12, X12
  1532	AESENC	X13, X13
  1533	AESENC	X14, X14
  1534	AESENC	X15, X15
  1535	AESENC	X8, X8
  1536	AESENC	X9, X9
  1537	AESENC	X10, X10
  1538	AESENC	X11, X11
  1539	AESENC	X12, X12
  1540	AESENC	X13, X13
  1541	AESENC	X14, X14
  1542	AESENC	X15, X15
  1543	AESENC	X8, X8
  1544	AESENC	X9, X9
  1545	AESENC	X10, X10
  1546	AESENC	X11, X11
  1547	AESENC	X12, X12
  1548	AESENC	X13, X13
  1549	AESENC	X14, X14
  1550	AESENC	X15, X15
  1551
  1552	PXOR	X12, X8
  1553	PXOR	X13, X9
  1554	PXOR	X14, X10
  1555	PXOR	X15, X11
  1556	PXOR	X10, X8
  1557	PXOR	X11, X9
  1558	PXOR	X9, X8
  1559	// X15 must be zero on return
  1560	PXOR	X15, X15
  1561	MOVQ	X8, AX	// return X8
  1562	RET
  1563
  1564// func memhash32(p unsafe.Pointer, h uintptr) uintptr
  1565// ABIInternal for performance.
  1566TEXT runtime·memhash32<ABIInternal>(SB),NOSPLIT,$0-24
  1567	// AX = ptr to data
  1568	// BX = seed
  1569	CMPB	runtime·useAeshash(SB), $0
  1570	JEQ	noaes
  1571	MOVQ	BX, X0	// X0 = seed
  1572	PINSRD	$2, (AX), X0	// data
  1573	AESENC	runtime·aeskeysched+0(SB), X0
  1574	AESENC	runtime·aeskeysched+16(SB), X0
  1575	AESENC	runtime·aeskeysched+32(SB), X0
  1576	MOVQ	X0, AX	// return X0
  1577	RET
  1578noaes:
  1579	JMP	runtime·memhash32Fallback<ABIInternal>(SB)
  1580
  1581// func memhash64(p unsafe.Pointer, h uintptr) uintptr
  1582// ABIInternal for performance.
  1583TEXT runtime·memhash64<ABIInternal>(SB),NOSPLIT,$0-24
  1584	// AX = ptr to data
  1585	// BX = seed
  1586	CMPB	runtime·useAeshash(SB), $0
  1587	JEQ	noaes
  1588	MOVQ	BX, X0	// X0 = seed
  1589	PINSRQ	$1, (AX), X0	// data
  1590	AESENC	runtime·aeskeysched+0(SB), X0
  1591	AESENC	runtime·aeskeysched+16(SB), X0
  1592	AESENC	runtime·aeskeysched+32(SB), X0
  1593	MOVQ	X0, AX	// return X0
  1594	RET
  1595noaes:
  1596	JMP	runtime·memhash64Fallback<ABIInternal>(SB)
  1597
  1598// simple mask to get rid of data in the high part of the register.
  1599DATA masks<>+0x00(SB)/8, $0x0000000000000000
  1600DATA masks<>+0x08(SB)/8, $0x0000000000000000
  1601DATA masks<>+0x10(SB)/8, $0x00000000000000ff
  1602DATA masks<>+0x18(SB)/8, $0x0000000000000000
  1603DATA masks<>+0x20(SB)/8, $0x000000000000ffff
  1604DATA masks<>+0x28(SB)/8, $0x0000000000000000
  1605DATA masks<>+0x30(SB)/8, $0x0000000000ffffff
  1606DATA masks<>+0x38(SB)/8, $0x0000000000000000
  1607DATA masks<>+0x40(SB)/8, $0x00000000ffffffff
  1608DATA masks<>+0x48(SB)/8, $0x0000000000000000
  1609DATA masks<>+0x50(SB)/8, $0x000000ffffffffff
  1610DATA masks<>+0x58(SB)/8, $0x0000000000000000
  1611DATA masks<>+0x60(SB)/8, $0x0000ffffffffffff
  1612DATA masks<>+0x68(SB)/8, $0x0000000000000000
  1613DATA masks<>+0x70(SB)/8, $0x00ffffffffffffff
  1614DATA masks<>+0x78(SB)/8, $0x0000000000000000
  1615DATA masks<>+0x80(SB)/8, $0xffffffffffffffff
  1616DATA masks<>+0x88(SB)/8, $0x0000000000000000
  1617DATA masks<>+0x90(SB)/8, $0xffffffffffffffff
  1618DATA masks<>+0x98(SB)/8, $0x00000000000000ff
  1619DATA masks<>+0xa0(SB)/8, $0xffffffffffffffff
  1620DATA masks<>+0xa8(SB)/8, $0x000000000000ffff
  1621DATA masks<>+0xb0(SB)/8, $0xffffffffffffffff
  1622DATA masks<>+0xb8(SB)/8, $0x0000000000ffffff
  1623DATA masks<>+0xc0(SB)/8, $0xffffffffffffffff
  1624DATA masks<>+0xc8(SB)/8, $0x00000000ffffffff
  1625DATA masks<>+0xd0(SB)/8, $0xffffffffffffffff
  1626DATA masks<>+0xd8(SB)/8, $0x000000ffffffffff
  1627DATA masks<>+0xe0(SB)/8, $0xffffffffffffffff
  1628DATA masks<>+0xe8(SB)/8, $0x0000ffffffffffff
  1629DATA masks<>+0xf0(SB)/8, $0xffffffffffffffff
  1630DATA masks<>+0xf8(SB)/8, $0x00ffffffffffffff
  1631GLOBL masks<>(SB),RODATA,$256
  1632
  1633// func checkASM() bool
  1634TEXT ·checkASM(SB),NOSPLIT,$0-1
  1635	// check that masks<>(SB) and shifts<>(SB) are aligned to 16-byte
  1636	MOVQ	$masks<>(SB), AX
  1637	MOVQ	$shifts<>(SB), BX
  1638	ORQ	BX, AX
  1639	TESTQ	$15, AX
  1640	SETEQ	ret+0(FP)
  1641	RET
  1642
  1643// these are arguments to pshufb. They move data down from
  1644// the high bytes of the register to the low bytes of the register.
  1645// index is how many bytes to move.
  1646DATA shifts<>+0x00(SB)/8, $0x0000000000000000
  1647DATA shifts<>+0x08(SB)/8, $0x0000000000000000
  1648DATA shifts<>+0x10(SB)/8, $0xffffffffffffff0f
  1649DATA shifts<>+0x18(SB)/8, $0xffffffffffffffff
  1650DATA shifts<>+0x20(SB)/8, $0xffffffffffff0f0e
  1651DATA shifts<>+0x28(SB)/8, $0xffffffffffffffff
  1652DATA shifts<>+0x30(SB)/8, $0xffffffffff0f0e0d
  1653DATA shifts<>+0x38(SB)/8, $0xffffffffffffffff
  1654DATA shifts<>+0x40(SB)/8, $0xffffffff0f0e0d0c
  1655DATA shifts<>+0x48(SB)/8, $0xffffffffffffffff
  1656DATA shifts<>+0x50(SB)/8, $0xffffff0f0e0d0c0b
  1657DATA shifts<>+0x58(SB)/8, $0xffffffffffffffff
  1658DATA shifts<>+0x60(SB)/8, $0xffff0f0e0d0c0b0a
  1659DATA shifts<>+0x68(SB)/8, $0xffffffffffffffff
  1660DATA shifts<>+0x70(SB)/8, $0xff0f0e0d0c0b0a09
  1661DATA shifts<>+0x78(SB)/8, $0xffffffffffffffff
  1662DATA shifts<>+0x80(SB)/8, $0x0f0e0d0c0b0a0908
  1663DATA shifts<>+0x88(SB)/8, $0xffffffffffffffff
  1664DATA shifts<>+0x90(SB)/8, $0x0e0d0c0b0a090807
  1665DATA shifts<>+0x98(SB)/8, $0xffffffffffffff0f
  1666DATA shifts<>+0xa0(SB)/8, $0x0d0c0b0a09080706
  1667DATA shifts<>+0xa8(SB)/8, $0xffffffffffff0f0e
  1668DATA shifts<>+0xb0(SB)/8, $0x0c0b0a0908070605
  1669DATA shifts<>+0xb8(SB)/8, $0xffffffffff0f0e0d
  1670DATA shifts<>+0xc0(SB)/8, $0x0b0a090807060504
  1671DATA shifts<>+0xc8(SB)/8, $0xffffffff0f0e0d0c
  1672DATA shifts<>+0xd0(SB)/8, $0x0a09080706050403
  1673DATA shifts<>+0xd8(SB)/8, $0xffffff0f0e0d0c0b
  1674DATA shifts<>+0xe0(SB)/8, $0x0908070605040302
  1675DATA shifts<>+0xe8(SB)/8, $0xffff0f0e0d0c0b0a
  1676DATA shifts<>+0xf0(SB)/8, $0x0807060504030201
  1677DATA shifts<>+0xf8(SB)/8, $0xff0f0e0d0c0b0a09
  1678GLOBL shifts<>(SB),RODATA,$256
  1679
  1680// Called from cgo wrappers, this function returns g->m->curg.stack.hi.
  1681// Must obey the gcc calling convention.
  1682TEXT _cgo_topofstack(SB),NOSPLIT,$0
  1683	get_tls(CX)
  1684	MOVQ	g(CX), AX
  1685	MOVQ	g_m(AX), AX
  1686	MOVQ	m_curg(AX), AX
  1687	MOVQ	(g_stack+stack_hi)(AX), AX
  1688	RET
  1689
  1690// The top-most function running on a goroutine
  1691// returns to goexit+PCQuantum.
  1692TEXT runtime·goexit(SB),NOSPLIT|TOPFRAME|NOFRAME,$0-0
  1693	BYTE	$0x90	// NOP
  1694	CALL	runtime·goexit1(SB)	// does not return
  1695	// traceback from goexit1 must hit code range of goexit
  1696	BYTE	$0x90	// NOP
  1697
  1698// This is called from .init_array and follows the platform, not Go, ABI.
  1699TEXT runtime·addmoduledata(SB),NOSPLIT,$0-0
  1700	PUSHQ	R15 // The access to global variables below implicitly uses R15, which is callee-save
  1701	MOVQ	runtime·lastmoduledatap(SB), AX
  1702	MOVQ	DI, moduledata_next(AX)
  1703	MOVQ	DI, runtime·lastmoduledatap(SB)
  1704	POPQ	R15
  1705	RET
  1706
  1707// Initialize special registers then jump to sigpanic.
  1708// This function is injected from the signal handler for panicking
  1709// signals. It is quite painful to set X15 in the signal context,
  1710// so we do it here.
  1711TEXT ·sigpanic0(SB),NOSPLIT,$0-0
  1712	get_tls(R14)
  1713	MOVQ	g(R14), R14
  1714	XORPS	X15, X15
  1715	JMP	·sigpanic<ABIInternal>(SB)
  1716
  1717// gcWriteBarrier informs the GC about heap pointer writes.
  1718//
  1719// gcWriteBarrier returns space in a write barrier buffer which
  1720// should be filled in by the caller.
  1721// gcWriteBarrier does NOT follow the Go ABI. It accepts the
  1722// number of bytes of buffer needed in R11, and returns a pointer
  1723// to the buffer space in R11.
  1724// It clobbers FLAGS. It does not clobber any general-purpose registers,
  1725// but may clobber others (e.g., SSE registers).
  1726// Typical use would be, when doing *(CX+88) = AX
  1727//     CMPL    $0, runtime.writeBarrier(SB)
  1728//     JEQ     dowrite
  1729//     CALL    runtime.gcBatchBarrier2(SB)
  1730//     MOVQ    AX, (R11)
  1731//     MOVQ    88(CX), DX
  1732//     MOVQ    DX, 8(R11)
  1733// dowrite:
  1734//     MOVQ    AX, 88(CX)
  1735TEXT gcWriteBarrier<>(SB),NOSPLIT,$112
  1736	// Save the registers clobbered by the fast path. This is slightly
  1737	// faster than having the caller spill these.
  1738	MOVQ	R12, 96(SP)
  1739	MOVQ	R13, 104(SP)
  1740retry:
  1741	// TODO: Consider passing g.m.p in as an argument so they can be shared
  1742	// across a sequence of write barriers.
  1743	MOVQ	g_m(R14), R13
  1744	MOVQ	m_p(R13), R13
  1745	// Get current buffer write position.
  1746	MOVQ	(p_wbBuf+wbBuf_next)(R13), R12	// original next position
  1747	ADDQ	R11, R12			// new next position
  1748	// Is the buffer full?
  1749	CMPQ	R12, (p_wbBuf+wbBuf_end)(R13)
  1750	JA	flush
  1751	// Commit to the larger buffer.
  1752	MOVQ	R12, (p_wbBuf+wbBuf_next)(R13)
  1753	// Make return value (the original next position)
  1754	SUBQ	R11, R12
  1755	MOVQ	R12, R11
  1756	// Restore registers.
  1757	MOVQ	96(SP), R12
  1758	MOVQ	104(SP), R13
  1759	RET
  1760
  1761flush:
  1762	// Save all general purpose registers since these could be
  1763	// clobbered by wbBufFlush and were not saved by the caller.
  1764	// It is possible for wbBufFlush to clobber other registers
  1765	// (e.g., SSE registers), but the compiler takes care of saving
  1766	// those in the caller if necessary. This strikes a balance
  1767	// with registers that are likely to be used.
  1768	//
  1769	// We don't have type information for these, but all code under
  1770	// here is NOSPLIT, so nothing will observe these.
  1771	//
  1772	// TODO: We could strike a different balance; e.g., saving X0
  1773	// and not saving GP registers that are less likely to be used.
  1774	MOVQ	DI, 0(SP)
  1775	MOVQ	AX, 8(SP)
  1776	MOVQ	BX, 16(SP)
  1777	MOVQ	CX, 24(SP)
  1778	MOVQ	DX, 32(SP)
  1779	// DI already saved
  1780	MOVQ	SI, 40(SP)
  1781	MOVQ	BP, 48(SP)
  1782	MOVQ	R8, 56(SP)
  1783	MOVQ	R9, 64(SP)
  1784	MOVQ	R10, 72(SP)
  1785	MOVQ	R11, 80(SP)
  1786	// R12 already saved
  1787	// R13 already saved
  1788	// R14 is g
  1789	MOVQ	R15, 88(SP)
  1790
  1791	CALL	runtime·wbBufFlush(SB)
  1792
  1793	MOVQ	0(SP), DI
  1794	MOVQ	8(SP), AX
  1795	MOVQ	16(SP), BX
  1796	MOVQ	24(SP), CX
  1797	MOVQ	32(SP), DX
  1798	MOVQ	40(SP), SI
  1799	MOVQ	48(SP), BP
  1800	MOVQ	56(SP), R8
  1801	MOVQ	64(SP), R9
  1802	MOVQ	72(SP), R10
  1803	MOVQ	80(SP), R11
  1804	MOVQ	88(SP), R15
  1805	JMP	retry
  1806
  1807TEXT runtime·gcWriteBarrier1<ABIInternal>(SB),NOSPLIT|NOFRAME,$0
  1808	MOVL   $8, R11
  1809	JMP     gcWriteBarrier<>(SB)
  1810TEXT runtime·gcWriteBarrier2<ABIInternal>(SB),NOSPLIT|NOFRAME,$0
  1811	MOVL   $16, R11
  1812	JMP     gcWriteBarrier<>(SB)
  1813TEXT runtime·gcWriteBarrier3<ABIInternal>(SB),NOSPLIT|NOFRAME,$0
  1814	MOVL   $24, R11
  1815	JMP     gcWriteBarrier<>(SB)
  1816TEXT runtime·gcWriteBarrier4<ABIInternal>(SB),NOSPLIT|NOFRAME,$0
  1817	MOVL   $32, R11
  1818	JMP     gcWriteBarrier<>(SB)
  1819TEXT runtime·gcWriteBarrier5<ABIInternal>(SB),NOSPLIT|NOFRAME,$0
  1820	MOVL   $40, R11
  1821	JMP     gcWriteBarrier<>(SB)
  1822TEXT runtime·gcWriteBarrier6<ABIInternal>(SB),NOSPLIT|NOFRAME,$0
  1823	MOVL   $48, R11
  1824	JMP     gcWriteBarrier<>(SB)
  1825TEXT runtime·gcWriteBarrier7<ABIInternal>(SB),NOSPLIT|NOFRAME,$0
  1826	MOVL   $56, R11
  1827	JMP     gcWriteBarrier<>(SB)
  1828TEXT runtime·gcWriteBarrier8<ABIInternal>(SB),NOSPLIT|NOFRAME,$0
  1829	MOVL   $64, R11
  1830	JMP     gcWriteBarrier<>(SB)
  1831
  1832DATA	debugCallFrameTooLarge<>+0x00(SB)/20, $"call frame too large"
  1833GLOBL	debugCallFrameTooLarge<>(SB), RODATA, $20	// Size duplicated below
  1834
  1835// debugCallV2 is the entry point for debugger-injected function
  1836// calls on running goroutines. It informs the runtime that a
  1837// debug call has been injected and creates a call frame for the
  1838// debugger to fill in.
  1839//
  1840// To inject a function call, a debugger should:
  1841// 1. Check that the goroutine is in state _Grunning and that
  1842//    there are at least 256 bytes free on the stack.
  1843// 2. Push the current PC on the stack (updating SP).
  1844// 3. Write the desired argument frame size at SP-16 (using the SP
  1845//    after step 2).
  1846// 4. Save all machine registers (including flags and XMM registers)
  1847//    so they can be restored later by the debugger.
  1848// 5. Set the PC to debugCallV2 and resume execution.
  1849//
  1850// If the goroutine is in state _Grunnable, then it's not generally
  1851// safe to inject a call because it may return out via other runtime
  1852// operations. Instead, the debugger should unwind the stack to find
  1853// the return to non-runtime code, add a temporary breakpoint there,
  1854// and inject the call once that breakpoint is hit.
  1855//
  1856// If the goroutine is in any other state, it's not safe to inject a call.
  1857//
  1858// This function communicates back to the debugger by setting R12 and
  1859// invoking INT3 to raise a breakpoint signal. See the comments in the
  1860// implementation for the protocol the debugger is expected to
  1861// follow. InjectDebugCall in the runtime tests demonstrates this protocol.
  1862//
  1863// The debugger must ensure that any pointers passed to the function
  1864// obey escape analysis requirements. Specifically, it must not pass
  1865// a stack pointer to an escaping argument. debugCallV2 cannot check
  1866// this invariant.
  1867//
  1868// This is ABIInternal because Go code injects its PC directly into new
  1869// goroutine stacks.
  1870TEXT runtime·debugCallV2<ABIInternal>(SB),NOSPLIT,$152-0
  1871	// Save all registers that may contain pointers so they can be
  1872	// conservatively scanned.
  1873	//
  1874	// We can't do anything that might clobber any of these
  1875	// registers before this.
  1876	MOVQ	R15, r15-(14*8+8)(SP)
  1877	MOVQ	R14, r14-(13*8+8)(SP)
  1878	MOVQ	R13, r13-(12*8+8)(SP)
  1879	MOVQ	R12, r12-(11*8+8)(SP)
  1880	MOVQ	R11, r11-(10*8+8)(SP)
  1881	MOVQ	R10, r10-(9*8+8)(SP)
  1882	MOVQ	R9, r9-(8*8+8)(SP)
  1883	MOVQ	R8, r8-(7*8+8)(SP)
  1884	MOVQ	DI, di-(6*8+8)(SP)
  1885	MOVQ	SI, si-(5*8+8)(SP)
  1886	MOVQ	BP, bp-(4*8+8)(SP)
  1887	MOVQ	BX, bx-(3*8+8)(SP)
  1888	MOVQ	DX, dx-(2*8+8)(SP)
  1889	// Save the frame size before we clobber it. Either of the last
  1890	// saves could clobber this depending on whether there's a saved BP.
  1891	MOVQ	frameSize-24(FP), DX	// aka -16(RSP) before prologue
  1892	MOVQ	CX, cx-(1*8+8)(SP)
  1893	MOVQ	AX, ax-(0*8+8)(SP)
  1894
  1895	// Save the argument frame size.
  1896	MOVQ	DX, frameSize-128(SP)
  1897
  1898	// Perform a safe-point check.
  1899	MOVQ	retpc-8(FP), AX	// Caller's PC
  1900	MOVQ	AX, 0(SP)
  1901	CALL	runtime·debugCallCheck(SB)
  1902	MOVQ	8(SP), AX
  1903	TESTQ	AX, AX
  1904	JZ	good
  1905	// The safety check failed. Put the reason string at the top
  1906	// of the stack.
  1907	MOVQ	AX, 0(SP)
  1908	MOVQ	16(SP), AX
  1909	MOVQ	AX, 8(SP)
  1910	// Set R12 to 8 and invoke INT3. The debugger should get the
  1911	// reason a call can't be injected from the top of the stack
  1912	// and resume execution.
  1913	MOVQ	$8, R12
  1914	BYTE	$0xcc
  1915	JMP	restore
  1916
  1917good:
  1918	// Registers are saved and it's safe to make a call.
  1919	// Open up a call frame, moving the stack if necessary.
  1920	//
  1921	// Once the frame is allocated, this will set R12 to 0 and
  1922	// invoke INT3. The debugger should write the argument
  1923	// frame for the call at SP, set up argument registers, push
  1924	// the trapping PC on the stack, set the PC to the function to
  1925	// call, set RDX to point to the closure (if a closure call),
  1926	// and resume execution.
  1927	//
  1928	// If the function returns, this will set R12 to 1 and invoke
  1929	// INT3. The debugger can then inspect any return value saved
  1930	// on the stack at SP and in registers and resume execution again.
  1931	//
  1932	// If the function panics, this will set R12 to 2 and invoke INT3.
  1933	// The interface{} value of the panic will be at SP. The debugger
  1934	// can inspect the panic value and resume execution again.
  1935#define DEBUG_CALL_DISPATCH(NAME,MAXSIZE)	\
  1936	CMPQ	AX, $MAXSIZE;			\
  1937	JA	5(PC);				\
  1938	MOVQ	$NAME(SB), AX;			\
  1939	MOVQ	AX, 0(SP);			\
  1940	CALL	runtime·debugCallWrap(SB);	\
  1941	JMP	restore
  1942
  1943	MOVQ	frameSize-128(SP), AX
  1944	DEBUG_CALL_DISPATCH(debugCall32<>, 32)
  1945	DEBUG_CALL_DISPATCH(debugCall64<>, 64)
  1946	DEBUG_CALL_DISPATCH(debugCall128<>, 128)
  1947	DEBUG_CALL_DISPATCH(debugCall256<>, 256)
  1948	DEBUG_CALL_DISPATCH(debugCall512<>, 512)
  1949	DEBUG_CALL_DISPATCH(debugCall1024<>, 1024)
  1950	DEBUG_CALL_DISPATCH(debugCall2048<>, 2048)
  1951	DEBUG_CALL_DISPATCH(debugCall4096<>, 4096)
  1952	DEBUG_CALL_DISPATCH(debugCall8192<>, 8192)
  1953	DEBUG_CALL_DISPATCH(debugCall16384<>, 16384)
  1954	DEBUG_CALL_DISPATCH(debugCall32768<>, 32768)
  1955	DEBUG_CALL_DISPATCH(debugCall65536<>, 65536)
  1956	// The frame size is too large. Report the error.
  1957	MOVQ	$debugCallFrameTooLarge<>(SB), AX
  1958	MOVQ	AX, 0(SP)
  1959	MOVQ	$20, 8(SP) // length of debugCallFrameTooLarge string
  1960	MOVQ	$8, R12
  1961	BYTE	$0xcc
  1962	JMP	restore
  1963
  1964restore:
  1965	// Calls and failures resume here.
  1966	//
  1967	// Set R12 to 16 and invoke INT3. The debugger should restore
  1968	// all registers except RIP and RSP and resume execution.
  1969	MOVQ	$16, R12
  1970	BYTE	$0xcc
  1971	// We must not modify flags after this point.
  1972
  1973	// Restore pointer-containing registers, which may have been
  1974	// modified from the debugger's copy by stack copying.
  1975	MOVQ	ax-(0*8+8)(SP), AX
  1976	MOVQ	cx-(1*8+8)(SP), CX
  1977	MOVQ	dx-(2*8+8)(SP), DX
  1978	MOVQ	bx-(3*8+8)(SP), BX
  1979	MOVQ	bp-(4*8+8)(SP), BP
  1980	MOVQ	si-(5*8+8)(SP), SI
  1981	MOVQ	di-(6*8+8)(SP), DI
  1982	MOVQ	r8-(7*8+8)(SP), R8
  1983	MOVQ	r9-(8*8+8)(SP), R9
  1984	MOVQ	r10-(9*8+8)(SP), R10
  1985	MOVQ	r11-(10*8+8)(SP), R11
  1986	MOVQ	r12-(11*8+8)(SP), R12
  1987	MOVQ	r13-(12*8+8)(SP), R13
  1988	MOVQ	r14-(13*8+8)(SP), R14
  1989	MOVQ	r15-(14*8+8)(SP), R15
  1990
  1991	RET
  1992
  1993// runtime.debugCallCheck assumes that functions defined with the
  1994// DEBUG_CALL_FN macro are safe points to inject calls.
  1995#define DEBUG_CALL_FN(NAME,MAXSIZE)		\
  1996TEXT NAME(SB),WRAPPER,$MAXSIZE-0;		\
  1997	NO_LOCAL_POINTERS;			\
  1998	MOVQ	$0, R12;				\
  1999	BYTE	$0xcc;				\
  2000	MOVQ	$1, R12;				\
  2001	BYTE	$0xcc;				\
  2002	RET
  2003DEBUG_CALL_FN(debugCall32<>, 32)
  2004DEBUG_CALL_FN(debugCall64<>, 64)
  2005DEBUG_CALL_FN(debugCall128<>, 128)
  2006DEBUG_CALL_FN(debugCall256<>, 256)
  2007DEBUG_CALL_FN(debugCall512<>, 512)
  2008DEBUG_CALL_FN(debugCall1024<>, 1024)
  2009DEBUG_CALL_FN(debugCall2048<>, 2048)
  2010DEBUG_CALL_FN(debugCall4096<>, 4096)
  2011DEBUG_CALL_FN(debugCall8192<>, 8192)
  2012DEBUG_CALL_FN(debugCall16384<>, 16384)
  2013DEBUG_CALL_FN(debugCall32768<>, 32768)
  2014DEBUG_CALL_FN(debugCall65536<>, 65536)
  2015
  2016// func debugCallPanicked(val interface{})
  2017TEXT runtime·debugCallPanicked(SB),NOSPLIT,$16-16
  2018	// Copy the panic value to the top of stack.
  2019	MOVQ	val_type+0(FP), AX
  2020	MOVQ	AX, 0(SP)
  2021	MOVQ	val_data+8(FP), AX
  2022	MOVQ	AX, 8(SP)
  2023	MOVQ	$2, R12
  2024	BYTE	$0xcc
  2025	RET
  2026
  2027// Note: these functions use a special calling convention to save generated code space.
  2028// Arguments are passed in registers, but the space for those arguments are allocated
  2029// in the caller's stack frame. These stubs write the args into that stack space and
  2030// then tail call to the corresponding runtime handler.
  2031// The tail call makes these stubs disappear in backtraces.
  2032// Defined as ABIInternal since they do not use the stack-based Go ABI.
  2033TEXT runtime·panicIndex<ABIInternal>(SB),NOSPLIT,$0-16
  2034	MOVQ	CX, BX
  2035	JMP	runtime·goPanicIndex<ABIInternal>(SB)
  2036TEXT runtime·panicIndexU<ABIInternal>(SB),NOSPLIT,$0-16
  2037	MOVQ	CX, BX
  2038	JMP	runtime·goPanicIndexU<ABIInternal>(SB)
  2039TEXT runtime·panicSliceAlen<ABIInternal>(SB),NOSPLIT,$0-16
  2040	MOVQ	CX, AX
  2041	MOVQ	DX, BX
  2042	JMP	runtime·goPanicSliceAlen<ABIInternal>(SB)
  2043TEXT runtime·panicSliceAlenU<ABIInternal>(SB),NOSPLIT,$0-16
  2044	MOVQ	CX, AX
  2045	MOVQ	DX, BX
  2046	JMP	runtime·goPanicSliceAlenU<ABIInternal>(SB)
  2047TEXT runtime·panicSliceAcap<ABIInternal>(SB),NOSPLIT,$0-16
  2048	MOVQ	CX, AX
  2049	MOVQ	DX, BX
  2050	JMP	runtime·goPanicSliceAcap<ABIInternal>(SB)
  2051TEXT runtime·panicSliceAcapU<ABIInternal>(SB),NOSPLIT,$0-16
  2052	MOVQ	CX, AX
  2053	MOVQ	DX, BX
  2054	JMP	runtime·goPanicSliceAcapU<ABIInternal>(SB)
  2055TEXT runtime·panicSliceB<ABIInternal>(SB),NOSPLIT,$0-16
  2056	MOVQ	CX, BX
  2057	JMP	runtime·goPanicSliceB<ABIInternal>(SB)
  2058TEXT runtime·panicSliceBU<ABIInternal>(SB),NOSPLIT,$0-16
  2059	MOVQ	CX, BX
  2060	JMP	runtime·goPanicSliceBU<ABIInternal>(SB)
  2061TEXT runtime·panicSlice3Alen<ABIInternal>(SB),NOSPLIT,$0-16
  2062	MOVQ	DX, AX
  2063	JMP	runtime·goPanicSlice3Alen<ABIInternal>(SB)
  2064TEXT runtime·panicSlice3AlenU<ABIInternal>(SB),NOSPLIT,$0-16
  2065	MOVQ	DX, AX
  2066	JMP	runtime·goPanicSlice3AlenU<ABIInternal>(SB)
  2067TEXT runtime·panicSlice3Acap<ABIInternal>(SB),NOSPLIT,$0-16
  2068	MOVQ	DX, AX
  2069	JMP	runtime·goPanicSlice3Acap<ABIInternal>(SB)
  2070TEXT runtime·panicSlice3AcapU<ABIInternal>(SB),NOSPLIT,$0-16
  2071	MOVQ	DX, AX
  2072	JMP	runtime·goPanicSlice3AcapU<ABIInternal>(SB)
  2073TEXT runtime·panicSlice3B<ABIInternal>(SB),NOSPLIT,$0-16
  2074	MOVQ	CX, AX
  2075	MOVQ	DX, BX
  2076	JMP	runtime·goPanicSlice3B<ABIInternal>(SB)
  2077TEXT runtime·panicSlice3BU<ABIInternal>(SB),NOSPLIT,$0-16
  2078	MOVQ	CX, AX
  2079	MOVQ	DX, BX
  2080	JMP	runtime·goPanicSlice3BU<ABIInternal>(SB)
  2081TEXT runtime·panicSlice3C<ABIInternal>(SB),NOSPLIT,$0-16
  2082	MOVQ	CX, BX
  2083	JMP	runtime·goPanicSlice3C<ABIInternal>(SB)
  2084TEXT runtime·panicSlice3CU<ABIInternal>(SB),NOSPLIT,$0-16
  2085	MOVQ	CX, BX
  2086	JMP	runtime·goPanicSlice3CU<ABIInternal>(SB)
  2087TEXT runtime·panicSliceConvert<ABIInternal>(SB),NOSPLIT,$0-16
  2088	MOVQ	DX, AX
  2089	JMP	runtime·goPanicSliceConvert<ABIInternal>(SB)
  2090
  2091#ifdef GOOS_android
  2092// Use the free TLS_SLOT_APP slot #2 on Android Q.
  2093// Earlier androids are set up in gcc_android.c.
  2094DATA runtime·tls_g+0(SB)/8, $16
  2095GLOBL runtime·tls_g+0(SB), NOPTR, $8
  2096#endif
  2097#ifdef GOOS_windows
  2098GLOBL runtime·tls_g+0(SB), NOPTR, $8
  2099#endif
  2100
  2101// The compiler and assembler's -spectre=ret mode rewrites
  2102// all indirect CALL AX / JMP AX instructions to be
  2103// CALL retpolineAX / JMP retpolineAX.
  2104// See https://support.google.com/faqs/answer/7625886.
  2105#define RETPOLINE(reg) \
  2106	/*   CALL setup */     BYTE $0xE8; BYTE $(2+2); BYTE $0; BYTE $0; BYTE $0;	\
  2107	/* nospec: */									\
  2108	/*   PAUSE */           BYTE $0xF3; BYTE $0x90;					\
  2109	/*   JMP nospec */      BYTE $0xEB; BYTE $-(2+2);				\
  2110	/* setup: */									\
  2111	/*   MOVQ AX, 0(SP) */  BYTE $0x48|((reg&8)>>1); BYTE $0x89;			\
  2112	                        BYTE $0x04|((reg&7)<<3); BYTE $0x24;			\
  2113	/*   RET */             BYTE $0xC3
  2114
  2115TEXT runtime·retpolineAX(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(0)
  2116TEXT runtime·retpolineCX(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(1)
  2117TEXT runtime·retpolineDX(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(2)
  2118TEXT runtime·retpolineBX(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(3)
  2119/* SP is 4, can't happen / magic encodings */
  2120TEXT runtime·retpolineBP(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(5)
  2121TEXT runtime·retpolineSI(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(6)
  2122TEXT runtime·retpolineDI(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(7)
  2123TEXT runtime·retpolineR8(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(8)
  2124TEXT runtime·retpolineR9(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(9)
  2125TEXT runtime·retpolineR10(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(10)
  2126TEXT runtime·retpolineR11(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(11)
  2127TEXT runtime·retpolineR12(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(12)
  2128TEXT runtime·retpolineR13(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(13)
  2129TEXT runtime·retpolineR14(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(14)
  2130TEXT runtime·retpolineR15(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(15)
  2131
  2132TEXT ·getfp<ABIInternal>(SB),NOSPLIT|NOFRAME,$0
  2133	MOVQ BP, AX
  2134	RET

View as plain text